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a b s t r a c t

The nonlinear dynamic response and active vibration control of the piezoelectric

functionally graded plate are analyzed in this paper. Based on higher-order shear plate

theory and elastic piezoelectric theory, the nonlinear geometric and constitutive

relations of the piezoelectric functionally graded plate are established, and then the

through Hamilton’s variational principle. The nonlinear active vibration control of the

structure is carried out with adoption of the negative velocity feedback control

algorithm. By applying finite difference method, the whole problem is solved by using

iterative method synthetically. In numerical examples, the effects of mechanical load,

electric load, the volume fraction and the geometric parameters on the dynamic

response and vibration control of the piezoelectric FGM plate are investigated.

& 2010 Elsevier Ltd. All rights reserved.
0. Introduction

A class of material known as ‘‘functionally graded material’’(FGM), made such that the volume fractions of two or more
materials are varied continuously along a certain dimension, has attracted much attention in many structural members
and used in a wide variety of industries for its advanced properties. With the increased use of these materials, it is
important to get a full comprehension of the behavior of functionally graded plates and shells. The buckling and static
response of FGM composite plates and shells has been studied in literatures [1–5]. As for the dynamic properties analysis of
the FGM composite plates and shells, Pradhan et al. [6] investigated the natural frequency of FGM cylindrical thin shells
under various boundary conditions. Based on the high order shear deformation theory, Patel et al. [7] gave the finite
element solution for the free vibration of FGM elliptical cylindrical shells. Yang [8] provided vibration characteristic and
transient response of shear-deformable functionally graded plates and panels in thermal environments. There are also
many investigations on the exact solutions of the FGM plates and shells [9–13].

Recently, with the development of science and technology, smart structures receive increasing wide application. The
piezoelectric functionally graded plates or shells, a new sort of smart structure, are composed of piezoelectric layer
imbedded or amounted on the FGM structures. The research on these new piezoelectric FGM structure increasingly
becomes intense in the solid mechanics field. By exploiting its converse and direct piezoelectric effects as distributed
actuators, Xiao et al. [14] investigated the performance of the functionally graded plates integrated with the piezoelectric
actuators. He et al. [15] examined the active control of FGM plates with integrated piezoelectric sensors and actuators
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Advanced Technology of Design and Manufacturing for Vehicle Body, Hunan University, PR China.

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2010.01.005
mailto:maoyiqi1984@163.com


ARTICLE IN PRESS

M. Yiqi, F. Yiming / Journal of Sound and Vibration 329 (2010) 2015–20282016
using a finite element model. A comprehensive study was conducted for the shape and vibration control of FGM plates and
shells with integrated piezoelectric sensors and actuators by Liew and coworkers using finite element method [16,17].
Satyajit et al. [18] dealt with the geometrically nonlinear dynamic analysis of functionally graded (FG) laminated
composite plates integrated with a patch of active constrained layer damping (ACLD) treatment. The constraining layer of
the ACLD treatment is considered to be made of the piezoelectric fiber reinforced composite (PFRC) material. Based on the
first-order shear deformation theory, Ahmad et al. [19] developed an analytical solution for analysis of functionally graded
material beams containing two layers of piezoelectric material used as sensors and actuator.

In this paper, based on the higher-order shear deformation theory and elastic piezoelectric theory, the nonlinear
geometric and constitutive relations of the piezoelectric FGM plate are established. Assuming the distribution of electric
potential along the thickness direction in the piezoelectric layer is simulated by a sinusoidal function, the nonlinear motion
equations of the piezoelectric FGM plate are derived by using Hamilton’s principle. An analytical model for the active
vibration control of the piezoelectric FGM plate is established using the negative velocity feedback control algorithm. In the
numerical examples, the effects of the volume fraction and the geometric parameters on the dynamic response and
vibration control of the piezoelectric FGM plate are discussed.

1. Basic equations

Consider an orthotropic functionally graded material (FGM) plate mounted with two piezoelectric layers as shown in
Fig. 1, with length a, width b, total thickness H. The rectangular Cartesian coordinate system oxyz is set on the mid-plane
(z=0). The bottom surface of the FGM plate is an orthotropic metal layer and the top surface is an orthotropic ceramic layer.
The region between the two surfaces comprises material with different mix ratios of the ceramics and metal and can be
expressed as in the following equation:

Pf ¼ ð1�VðzÞÞpmþVðzÞpc (1)

where pf is the effective material property of the FGM ,pm and pc are the properties of the metal and ceramic, respectively.
VðzÞ is the volume fraction of the metal constituent of the FGM, where z is the thickness coordinate ð�h=2rzrh=2Þ and h

is the thickness of the FGM plate. The volume fraction is assumed to follow a power law function:

VðzÞ ¼ ðz=hþ1=2Þn (2)

where n ð0rnr1Þ is the volume fraction index and represents the material variation profile through the plate thickness,
and may be varied to obtain the optimum distribution of the constituent materials. The effective material properties of a
functionally graded plate may be written as in the following equation:

Ef ðzÞ ¼ ð1�VðzÞÞEmþVðzÞEc

rf ðzÞ ¼ ð1�VðzÞÞrmþVðzÞrc

nf ¼ const: (3)

Reddy [20] proposed a higher-order shear deformable theory. This theory takes into account the transverse shear
deformation of the structure and meets the condition that the shear force on both the bottom and top surfaces equal to
zero. Based on the Reddy’s higher-order shear deformation theory, the displacement field in the piezoelectric FGM plate is
given by

u1ðx; y; z; tÞ ¼ uðx; y; zÞþg1ðzÞc1ðx; y; tÞ�g2ðzÞw;x

u2ðx; y; z; tÞ ¼ vðx; y; zÞþg1ðzÞc2ðx; y; tÞ�g2ðzÞw;y

u3ðx; y; z; tÞ ¼wðx; y; tÞ (4)

Here, u1;u2;u3 are the displacements of a point in the plate at the time t along axes x; y; z, and u;v;w are the displacements
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Fig. 1. Schematic diagram of the piezoelectric FGM plate.
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of a point on the midplane ðz¼ 0Þ of the plate, c1 and c2 denote the rotations of a transverse normal about the y and x axes,
respectively. The functions g1ðzÞ and g2ðzÞ are given as

g1ðzÞ ¼ z
4z3

3H2
; g2ðzÞ ¼

4z3

3H2
(5)

The Von Karman type geometrically nonlinear strain–displacement relations corresponding to Eq. (4) are

ex ¼ u;xþ
1

2

qw

qx

� �2

þg1c1;x�g2w;xx

ey ¼ v;yþ
1

2

qw

qy

� �2

þg1c2;y�g2w;yy

exy ¼ u;yþv;xþ
qw

qx

qw

qy
þg1ðc1;yþc2;xÞ�2g2w;xy

exz ¼ g1;zc1�g2;zw;xþw;x

eyz ¼ g1;zc2�g2;zw;yþw;y (6)

The constitutive relations for an orthotropic functionally graded material are given as follows:
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sxy
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where

cf
11 ¼

E1ðzÞ

1�n12n21
cf

12 ¼
E2ðzÞn12

1�n12n21
cf

22 ¼
E2ðzÞ

1�n12n21

cf
44 ¼ G13ðzÞ cf

55 ¼ G23ðzÞ cf
66 ¼ G12ðzÞ

in which, E1ðzÞ; E2ðzÞ;G12ðzÞ;G13ðzÞ;G23ðzÞ represent the elastic constants varying along the thickness direction of the FGM
plate and can be obtained by Eq. (1).

The constitutive relations for an orthotropic piezoelectric material is given as follows:
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where, Dx, Dy and Dz represent the electric displacement components; Ex, Ey, Ez denote the electric field components;
Cp

ij ; euj
0 ; gij are the elastic, educed piezoelectric and dielectric permittivity constants, respectively, and

e3i
0 ¼ e3i�

ci3e33

c33
ði; j¼ 1;2Þ;

g33
0 ¼

e33e33

c33
þg33 (9)

The relations between electric field and the electric potential are

Ex ¼�C;x Ey ¼�C;y Ez ¼�C;z (10)
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For the brevity and convenience of expression, the following relations are proposed

x-1; y-2; z-3; xz-4; yz-5; xy-6 (11)

Based on the Hamilton’s principle, the nonlinear dynamic equations of the piezoelectric FGM plate can be derived by

d
Z t1

t0

ðK�PÞdt¼ 0 (12)

Here, K is the system kinetic energy, P is the system potential energy and they can be obtained by

K ¼

Z
V

1
2rðzÞ _ui _ui dV

P¼
Z

V
‘ ðeij; EiÞdV�

Z
A
½qi _ui�Qf�dA

‘ ¼ 1
2 cijkleijekl�esjiEseij�

1
2eijEiEj (13)

where ‘ is the system free energy; rðzÞ is the mass density of the piezoelectric FGM plate, and for the FGM core, it can be
deduced from Eq. (1), while for the piezoelectric layer, it is constant along the thickness; qi and Q are the mechanical and
electric loads applied. ui and _ui are the displacement and velocity components, V and A denote the volume and surface area
of the structure, respectively.

Employing a method similar to Ref. [21], the nonlinear dynamic equations of the piezoelectric FGM plates are obtained
from Eq. (12):

qN1

qx
þ

qN6

qy
¼ I1 €u

qN2

qy
þ

qN6

qx
¼ I1 €v

q2P1

qx2
þ

q2P2

qy2
þ2

q2P6

qxqy
þ

qQ 4

qy
þ

qQ 5

qx
þq¼ I1 €w

qM1

qx
þ

qM6

qy
�Q 5 ¼ I2

€c1

qM2

qy
þ

qM6

qx
�Q 4 ¼ I2

€c2

Z H=2

h=2
ðDx;xþDy;yþDz;z�QsÞdz¼ 0

Z �h=2

�H=2
ðDx;xþDy;yþDz;z�QaÞdz¼ 0 (14)

Here the top piezoelectric layer is defined as the sensor, the bottom as the actuator, and the equation of motion of the
sensor and actuator are presented separately as above. Qs and Qa are the electric load applied on the piezoelectric sensor
and actuator, ðNi;Q i;Mi;PiÞ are the stress resultants of the piezoelectric FGM plate, ðI1; I2Þ are the mass inertia constants of
the piezoelectric FGM plate. The stress resultants and inertia terms can be denoted as

Ni ¼

Z H=2

�H=2
si dz; Mi ¼

Z H=2

�H=2
sig1ðzÞdz; Pi ¼

Z H=2

�H=2
sig2ðzÞdz ði¼ 1;2;6Þ

Q i ¼

Z H=2

�H=2
sig1;zðzÞdz ði¼ 4;5Þ

I1 ¼

Z H=2

�H=2
rðzÞdz; I2 ¼

Z H=2

�H=2
rðzÞg1g1 dz (15)

Now, the stress resultants ðNi;Q i;Mi; PiÞ are decomposed into two parts, one is that related to the piezoelectric effect,
and the other related to the mechanical effect.

Ni ¼NiþNp
i ; Mi ¼MiþMp

i ; Pi ¼ PiþPp
i ; Q i ¼QiþQp

i (16)
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where the superscript p represents the piezoelectric effect. The component ðNi;Qi;Mi; PiÞ related to the mechanical effect
can be written as
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where

Aij ¼

Z h=2

�h=2
cf

ijðzÞdzþ

Z H=2

h=2
cpðsÞ

ij dzþ

Z �h=2

�H=2
cpðaÞ

ij dz

Bij ¼

Z h=2

�h=2
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Rij ¼

Z h=2
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dg1
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dg1
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where cf
ij are the elastic constants of FGM plate, which can be obtained from Eq. (7); cpðaÞ

ij and cpðsÞ
ij are the elastic constants

of the piezoelectric sensor and actuator, respectively.
The component ðNp

i ;Q
p
i ;M

p
i ; P

p
i Þ related to the piezoelectric effect can be written as

Np
1 ¼

Z �h=2

�H=2
ð�EðaÞz Þe31

0 dzþ
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0 dzþ
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Qp
4 ¼

Z �h=2

�H=2
ð�EðaÞy Þg1;zðzÞe24 dzþ

Z H=2

h=2
ð�EðsÞy Þg1;zðzÞe24 dz

Qp
5 ¼

Z �h=2

�H=2
ð�EðaÞx Þg1;zðzÞe15 dzþ

Z H=2

h=2
ð�EðsÞx Þg1;zðzÞe15 dz (18)

where EðaÞi and EðsÞi are the electric field of the piezoelectric actuator and sensor, respectively.
In most recently published papers on piezoelectric coupled plates, the electric field is assumed constant across the

thickness of the piezoelectric layer. Wang et al. [22] proved that the electrical potential distribution displays a quadratic
function shape across the thickness of the beam according to Maxwell equation, and had also given a good comparison
between the results obtained by the finite element analysis and the analytical results. In this paper, the distribution of the
electric potential across the thickness direction of the each piezoelectric layer is assumed to be sinusoidal [22], and the
electric potential at any point of the piezoelectric layer can be written as

Fðx; y; z; tÞ ¼fðx; y; tÞsin
2pðz�h=2Þ

H�h

� �
(19)

Introduce the following dimensionless parameters:

l1 ¼
h

a
; l2 ¼

h

b
; l3 ¼ 1; Aij ¼

Aij

c11h
; Bij ¼

Bij

c11h3
; Dij ¼

Dij

c11h3
; Rij ¼

Rij

c11h3
; F 44 ¼

F44

c11h

F 55 ¼
F55

c11h
; z¼

x

a
; Z¼ y

b
; U ¼

u

a
; V ¼

v

b
; W ¼

w

h
; eij ¼

eij

c11h
; t¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1l

4
1

r0h2ð1�n12n21Þ

s

q ¼
qð1�n12n21Þ

c11l
4
1

(20)

Based on the previous definition of stress resultants and neglecting the in-plane inertia, the nonlinear dynamic equations
of the piezoelectric FGM plate written in the form of displacements and electric field variables can be obtained by
substituting Eqs. (15), (16), (17) and (18) into Eq. (14)

A11ðU;zzþW;zW;zzÞþA12ðV;zZþW;ZW;zZÞþA66ðU;ZZþV;zZþW;zZW;ZþW;zW;ZZÞ

þ
q
qx

�Z �h=2

�H=2
ð�EðaÞz Þe31dzþ

Z H=2

h=2
ð�EðsÞz Þe31 dz

�
¼ 0 (21a)

A21ðU;zZþW;zW;zZÞþA22ðV;ZZþW;ZW;ZZÞþA66ðU;zZþV;zzþW;zzW;ZþW;zW;zZÞ

þ
q
qy

�Z �h=2

�H=2
ð�EðaÞz Þe32dzþ

Z H=2

h=2
ð�EðsÞz Þe32 dz

�
¼ 0 (21b)

R11C1;zzzþR12C2;zzZ�D11W;zzzz�D12W;zzZZþR12C1;zZZþR22C2;ZZZ�D12W;zzZZ�D22W;ZZZZ

þ2B66ðC1;zZZþC2;zzZÞ�4D66W;zzZZþF 44ðW;ZZþC2;ZÞþqþ
q
qx2

� Z �h=2

�H=2
ð�EðaÞz Þg2ðzÞe31 dzþ

Z H=2

h=2
ð�EðsÞz Þg2ðzÞe31 dz

�

þ
q
qy2

�Z �h=2

�H=2
ð�EðaÞz

�
g2ðzÞe32 dzþ

Z H=2

h=2
ð�EðsÞz Þg2ðzÞe32 dzÞþ

q
qy

�Z �h=2

�H=2
ð�EðaÞy Þg1;zðzÞe24 dzþ

Z H=2

h=2
ð�EðsÞy Þg1;zðzÞe24 dz

�

þ
q
qx

�Z �h=2

�H=2
ð�EðaÞx Þg1;zðzÞe15 dz

�
þ

Z H=2

h=2
ð�EðsÞx Þg1;zðzÞe15 dzÞ ¼ I1 €w (21c)

B11C1;zzþB12C2;zZ�R11W;zzz�R12W;zZZþB66ðC1;ZZþC2;zZÞ�2R66W;zZZ�F 55ðC1þW;zÞ

þ
q
qx

�Z �h=2

�H=2
ð�EðaÞz Þg1ðzÞe31 dzþ

Z H=2

h=2
ð�EðsÞz Þg1ðzÞe31 dz

�
�

Z �h=2

�H=2
ð�EðaÞx Þg1;zðzÞe15 dz�

Z H=2

h=2
ð�EðsÞx Þg1;zðzÞe15 dz¼ 0

(21d)

B12C1;zZþB22C2;ZZ�R12W;zzZ�R22W;ZZZþB66ðC1;zZþC2;zzÞ�2R66W;zzZ�F44ðC2þW;ZÞ

þ
q
qy

�Z �h=2

�H=2
ð�EðaÞz Þg1ðzÞe32 dzþ

Z H=2

h=2
ð�EðsÞz Þg1ðzÞe32 dz

�
�

Z �h=2

�H=2
ð�EðaÞy Þg1;zðzÞe24 dz�

Z H=2

h=2
ð�EðsÞy Þg1;zðzÞe24 dz¼ 0

(21e)

Z H=2

h=2
ðe15ðg1;zC2;z�g2;zW;ZzþW;ZzÞþg11EðsÞx;xþe24ðg1;zC1;Z�g2;zW;ZzþW;ZzÞþg22EðsÞy;yþe31ðg1;zCz;z�g2;zW;zzÞ
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þe32ðg1;zC2;Z�g2;zW;ZZÞþg33EðsÞz;z�Qex
s Þdz¼ 0 (21f)

Z �h=2

�H=2
ðe15ðg1;zc2;z�g2;zW;ZzþW;ZzÞþg11EðaÞx;xþe24ðg1;zc1;Z�g2;zW;ZzþW;ZzÞþg22EðaÞy;yþe31ðg1;zc1;z�g2;zW;zzÞ

þe32ðg1;zc2;Z�g2;zW;ZZÞþg33EðaÞz;z�Qex
a Þdz¼ 0 (21g)

In the above equations, Qex
s and Qex

a represent the electric load applied externally on the sensor and actuator,
respectively. To get a distinct presentation, the electric field Eiði¼ x; y; zÞ are not substituted by the electric potential f.

Consider a piezoelectric FGM plate with four simply and immovably supported, and electrically grounded edges, so the
boundary conditions are

z¼ 0;1 : V ¼W ¼ 0;C2 ¼ 0;Nz ¼ 0;Mz ¼ 0;F¼ 0

Z¼ 0;1 : U ¼W ¼ 0;C1 ¼ 0;NZ ¼ 0;MZ ¼ 0;F¼ 0 (22)

By integrating the FGM plate with two piezoelectric layers, sensor and actuator, to a close-loop control system, the active
vibration control of the structure can be realized with the use of the negative velocity feedback control algorithm as shown
in Fig. 2.

The charge output of the sensor, with poling in the z direction, can be expressed in terms of spatial integration of the
electric displacement over its surface as follows:

Q ðsÞðtÞ ¼

Z
A

DzðtÞdA¼ 1
2½

Z
Aðz ¼ zkÞ

DzðtÞdAþ

Z
Aðz ¼ zkþ 1Þ

DzðtÞ dA� (23)

The current on the surface of the sensor is given by

IðtÞ ¼
dQ ðsÞ

dt
(24)

The actuator voltage, to be applied on the bottom surface of the actuator, can be obtained when the current is converted
into the open circuit sensor voltage and then amplified with a change of polarity as follows

fðaÞ ¼ �GiGc
dQ ðsÞ

dt
(25)

where Gc is the constant gain of the amplifier and Gi is the gain of the amplifier to provide feedback control. Assuming the
top surface of the actuator is short connected with FGM plate and the distribution of the electric potential is linear along
the thickness in the actuator, the electric field in the actuator can be written as

EðaÞz ¼�2
GiGc

H�h

dQ ðsÞ

dt
(26)
Sensor output

z

x

b

y

FGM  plate 

a

Actuator input

Piezoelectric sensor 

H h

Controller

Piezoelectric actuator 

Fig. 2. Schematic diagram of the piezoelectric smart laminated plates and control loop.
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2. Solution methodology

Let the piezoelectric FGM plate be subjected to a following transverse dynamic load on the top surface

q ¼ qðtÞsinpxsinpZ (27)

In the following analysis, the qðtÞ is set as two types as: (1) qðtÞ ¼ q0sinyt, (2) qðtÞ ¼ q0. For the first type, the load can be
considered as a sinusoidal transverse load with a fixed frequency, and the second type is a constant load.

Since the load and the structure are symmetric, only one quarter of the plate needs be considered. So the domain of the
problem is selected as 0rxr1=2; 0rZr1=2.

To seek the approximate solutions of the governing Eq. (21) which satisfied the boundary conditions (22), the unknown
variables U;V ,W and f are discretized both for space and for time. The finite difference method is used for space, and the
partial derivatives with respect to the space coordinate variables in the equations are replaced by difference form. The time
t is equally divided into small time segments Dt, and the whole equations are iterated to seek solutions. At each step of the
iteration, the nonlinear items in the equations and the boundary conditions are linearized. For example, at the step J, the
nonlinear items may be transformed to

ðx � yÞJ ¼ ðxÞJ � ðyÞJp
(28)

where ðyÞJp
is the average value of those obtained in the preceding two iterations. For the initial step of the iteration, it can

be determined by using the quadratic extrapolation, i.e.

ðyÞJp
¼ AðyÞJ�1þBðyÞJ�2þCðyÞJ�3 (29)

and for the different step of the iteration, the coefficients A;B and Ccan be expressed as follows:

J¼ 1 : A¼ 1;B¼ 0;C ¼ 0

J¼ 2 : A¼ 2;B¼�1;C ¼ 0

JZ3 : A¼ 3;B¼�3;C ¼ 1 (30)

Moreover, using the Newmark scheme, the inertia in Eq. (21) can be expressed as follows:

ðW;ttÞJ ¼
4ðWJ�WJ�1Þ

ðDtÞ2
�

4ðW;tÞJ�1

Dt �ðW;ttÞJ�1

ðW;tÞJ ¼ ðW;tÞJ�1þ
1
2½ðW;ttÞJ�1þðW;ttÞJ �Dt (31)

The first five equations in Eq. (21) are considered when the dynamic response of the FGM plate is in discussion, and the
electric field EðaÞz and EðsÞz are taken to be zero, while when the dynamic response and vibration control of the piezoelectric
FGM plate are investigated, the combination of the Eqs. (8),(19) and (21) are taken to iterate for the final solutions. For
every time step, the iteration lasts until the difference of the present value and the former is smaller than 0.1percent, then
continue the calculation of the next step.

3. Numerical results

To ensure the validity and accuracy of the method presented in this paper, the linear free vibration of the simply
supported FGM plate without consideration of piezoelectric effect was calculated. The FGM is set as aluminum–zirconia,
for aluminum Em ¼ 70 GPa, vm ¼ 0:3, rm ¼ 2707 kg=m3, and for zirconia: Ec ¼ 200 GPa, vc ¼ 0:3, rc ¼ 2702 kg=m3. The
dimensionless fundamental frequencies oðo¼o0h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm=Em

p
Þ are calculated and compared in Table 1 with the first-order

shear deformation theory (FSDT) [24], the three-dimensional (3-D) solutions [23] and the higher-order shear-deformation
solutions (HSDT) [24]. It can be observed from the Table 1 that, the FSDT over predicts the natural frequencies. When the
volume fraction exponent value is set constant, the difference between the results of HSDT and FSDT becomes great as the
thickness of the plate increases. Similar behavior was observed by NG et al. [25] in their prediction of origin of dynamic
stability of isotropic cylindrical shell panels. It was observed in Ref. [25] that the inclusion of transverse shear stresses and
Table 1
Comparison of the dimensionless linear fundamental frequency o for different thickness.

n=1 h/a=0.2

h/a=0.05 h/a=0.2 n=2 n=5

Present 0.0160 0.2279 0.2283 0.2306

3-D [21] 0.0153 0.2192 0.2197 0.2225

HSDT [22] 0.0157 0.2257 0.2237 0.2253

FSDT [22] 0.0162 0.2323 0.2325 0.2334



ARTICLE IN PRESS

M. Yiqi, F. Yiming / Journal of Sound and Vibration 329 (2010) 2015–2028 2023
rotary inertia effects in the higher-order theories generate more conservative results. However, the authors’ results are a
little higher than the 3-D results of Ref. [23] and results of HSDT [24], which may be due to the error from different
numerical analysis and different forms of selected higher-order theory.

In the analysis of the dynamic response and active vibration control of the piezoelectric FGM plate, a ceramic-metal
functionally graded rectangular plate with unmovable simply supported boundary condition is considered, and the
geometric parameters are set as l1¼ l2¼ 0:08, l3¼ 1. The following material properties are assumed in the numerical
examples.

Ec
1 ¼ 181:0 GPa; Ec

2 ¼ 100:3 GPa;Gc
12 ¼ Gc

13 ¼ 50:17 GPa;Gc
23 ¼ 40:87 GPa

nc
12 ¼ 0:3;rc ¼ 7800:0 Kg=m3

Em
1 ¼ 106:0 GPa; Em

2 ¼ 10:3 GPa;Gm
12 ¼ Gm

13 ¼ 7:17 GPa;Gm
23 ¼ 3:87 GPa

nm
12 ¼ 0:28;rm ¼ 5600:0 Kg=m3

where the superscript m and c represent the metal and ceramic material, respectively.
The piezoelectric layers are chosen as PZT-5A, the material constants are

E11 ¼ E22 ¼ 61:0 GPa; E33 ¼ 53:2 GPa;G12 ¼ 22:6 GPa;G13 ¼ G23 ¼ 21:1 GPa

e31 ¼ e32 ¼ 7:209 C=m2; e33 ¼ 15:118 C=m2; e24 ¼ e15 ¼ 12:72 C=m2; n12 ¼ 0:35

r¼ 7750:0 Kg=m3; g11 ¼ g22 ¼ 1:53� 10�8 F=m; g33 ¼ 1:5� 10�8 F=m

Fig. 3 shows the variation of the dimensionless elastic modulus of the FGM plate along the thickness direction when the
volume fraction exponent value nis changed. The value of n equal 0 represents a fully ceramic plate, while the value of
n-1 represents a fully metal plate, and the Young’s modulus changes rapidly near the bottom surface for n¼ 10.

The comparison of the linear and nonlinear dynamic response amplitude of the FGM plate when the dimensionless
sinusoidal load are set as q0 ¼ 5;10;15;20;25, and y=1 is presented in Fig. 4. The horizontal coordinate trepresents
dimensionless time, and longitudinal coordinate W0 represents the dimensionless central deflection of the FGM plate. It
can be noticed from the figure that the dimensionless deflection of the FGM plate in linear case is greater than that in
nonlinear case, and this phenomenon becomes more evident when the volume fraction value n increases. Similar behavior
was also observed in Ref. [26]. As we know, the linearity case is based on the limited deformation consumption, and the
higher order item in the geometric relations is neglected while it is in consideration for the nonlinear case. So in some
sense it can be concluded that the linear lowly predicts the stiffness of the structure. In order to reflect the dynamic
property of the FGM plate accurately, the consideration of the nonlinear effect is necessary in the dynamic analysis of the
structure.

Fig. 5 presents the dynamic response of the piezoelectric FGM plate and the variation of the piezoelectric potential
aroused on the central surface of the piezoelectric layer. The volume fraction value is n¼ 0:5 and the frequency of the
chosen sinusoidal load is y=1. The longitudinal coordinates f represents the electric potential on the central plane of the
piezoelectric layer. It can be seen from the figures that the vibration amplitude and frequency of the structure as well as
the sensed electric potential increases as the force increases and the sensed electric potential varies with the same
frequency as the structure.
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The effect of the electric load on the dynamic response of the FGM plate is presented in Fig. 6. The volume fraction value
and the load frequency are set same as that in Fig. 5, and the mechanical load is taken as q0 ¼ 40. It can be seen from the
figure that with the increase of the electric load, the nonlinear dynamic response of the structure decreases. The applied
positive electric load induces a compression, and correspondingly increases the structure’s stiffness, and decrease the
nonlinear dynamic response amplitude of the structure.
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In the Fig. 7, the effect of the volume fraction exponent value non the nonlinear dynamic response of the FGM plate is
discussed. The sinusoidal load is taken as, q0 ¼ 30, y=1 in the Fig. 7(a) and a constant mechanical load is adopted in
Fig. 7(b). It can be seen the deflection of the structure is comparatively small when n¼ 0:2. As the metal content in the
plate increases, the stiffness of the structure decreases and the dynamic response amplitude increases. When a fixed
frequency sinusoidal load is adopted, a forced vibration of the structures with the same frequency can be observed in
Fig. 7(a), while in Fig. 7(b), the variation of the vibration frequency of the structure with change of the volume fraction
exponent value n can be observed. It can be noticed when n is set small, high frequency of the vibration of the structures
can be observed and a great effect of the n on the vibration frequency can be concluded. In the above Figs. 5–7(a), some
nonlinear dynamic properties of the piezoelectric functionally graded plate are investigated using sinusoidal load, and high
harmonics vibration of the structure can be observed. That’s because more modes of the structure has been excitated under
this kind of load. In the following analysis, the constant mechanical load is mainly adopted.

When applying constant mechanical load on the top surface of the piezoelectric FGM plate, the effect of the thickness of
the piezoelectric layer on the dynamic response of the piezoelectric FGM plates and the comparison of the dynamic
response of the piezoelectric FGM plate with and without piezoelectric effect Fig. 8. Here the total thickness of the
piezoelectric FGM plate is kept constant and the thickness of the piezoelectric layer and the FGM core are changed. It can
be seen from the figure that the dynamic response amplitude of the piezoelectric FGM plate decreases and the vibration
frequency increases when the thickness of the piezoelectric layer increases. That is due to the fact that the increase of the
thickness of the piezoelectric layer would cause the increase of the stiffness of the structure. From the figure, it can also be
found the dimensionless central deflection of the FGM plate decreases and the vibration frequency increases. That is
because the converse piezoelectric effect causes an equivalent in-plane compressive stress, which correspondingly
increase the structure’s stiffness, influence the dynamic response of the FGM plate, but this effect is not so obvious.

From the previous discussion in the Fig. 6, we find that the nonlinear dynamic vibration can be depressed by exerting
electric load with the use of piezoelectric layer amounted on the surface of the FGM plate. But this control should be
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predetermined and cannot be adapted actively. With the introduction of the negative velocity feedback control algorithm,
the self-adapted active control can be realized with different control goal designed. In this paper, the vibration active
control is mainly discussed in the following.

We can consider the structure to work in the following manner: firstly the structure is exposed to an external constant
applied mechanical load and deforms, corresponding to the deformation, generalized displacements and induced
potentials in the sensors. Then the current on the surface of the piezoelectric sensor is converted into an open circuit sensor
voltage which can be feed back through an amplifier to the actuator with a change of polarity. The actuator voltage
produces an electric force which can be deemed as a damping in the system. During the first 10 time steps, the mechanical
load (as presented in Eq. (25)) is applied on the top surface of the piezoelectric surface, and q0 ¼ 100, y=1, the volume
fraction value n=1 , the control electrical resistance is taken as Gc ¼ 1:0� 105. Fig. 9 gives the effect of the control gain Gi on
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the nonlinear dynamic response of the FGM plate. It can be seen from the figure that when control gain Gi are set as
0;3;5;8, the structure vibrate freely under the initial mechanical load. With the introduction of the control gain, an
equivalent system damping is introduced, and the nonlinear dynamic response amplitude of the structure is suppressed;
the bigger the control gain is, the quicker the dynamic response of the structure decreases.

The effect of the volume fraction value n on the vibration active control of the piezoelectric FGM plate is investigated in
Fig. 10. The mechanical load is set as that in Fig. 9. It can be noticed from the figure that the bigger the value n is, the
greater the initial dynamic response amplitude is, and the time needed to completely control the vibration is longer.

Fig. 11 shows the effect of the thickness-length ratio h/a on the central dimensionless deflection of the piezoelectric
FGM plate. As reflected in Fig. 11, the decrease of the thickness-span ratio makes the vibration control of the structure
more evident, that is to say, it takes a longer time to efficiently suppress the vibration of a thick piezoelastic laminated
shallow spherical shell than that of a comparatively thin one.
4. Conclusion

Considering the mass and stiffness of the piezoelectric layers, the nonlinear dynamic response of the piezoelastic FGM
plate with piezoelectric sensor and actuator amounted is investigated by establishing the nonlinear dynamic equations of
the piezoelectric FGM plate. Using the negative velocity feedback control algorithm, an analytical model for the active
control of the piezoelectric FGM plate was established. Numerical examples for orthotropic piezoelectric FGM plates are
presented by using the finite element method. The main conclusions can be drawn as follows: the positive electric load
produces equivalent compressive stress in the piezoelectric layer and increases the stiffness of the structure; when the
volume fraction value n is larger, the initial dynamic response amplitude is greater, and the time needed to completely
control the vibration is longer; the vibration control becomes more evident when the gain of amplifier Gi increases; the
geometric parameters influence the vibration control of the structure to some extent.
Acknowledgment

This study is supported by the National Natural Science Foundation of China under Grant no. 10872066.

References

[1] A.H. Sofiyev, The buckling of functionally graded truncated conical shells under dynamic axial loading, Journal of Sound and Vibration 305 (2007)
808–826.

[2] G.N. Praveen, J.N. Reddy, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, International Journal of Solids and
Structures 35 (1998) 4457–4476.

[3] R. Kadoli, N. Ganesan, Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary
condition, Journal of Sound and Vibration 289 (2006) 450–480.

[4] T.R. Tauchert, Thermally induced flexure buckling and vibration of plates, Applied Mechanical Review 44 (1991) 347–360.
[5] L.S. Ma, T.J. Wang, Nonlinear bending and post-bucking of a functionally graded circular plate under mechanical and thermal loadings, International

Journal of Solids and Structures 40 (2003) 3311–3330.
[6] S.C. Pardhan, C.T. Loy, K.Y. Lam, J.N. Reddy, Vibration characteristics of functionally graded cylindrical shells under various boundary conditions,

Applied Acoustics 61 (2000) 111–129.
[7] B.P. Patel, S.S. Gupat, M.S. Loknath, C.P. Kadu, Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory,

Composite Structures 69 (2005) 259–270.



ARTICLE IN PRESS

M. Yiqi, F. Yiming / Journal of Sound and Vibration 329 (2010) 2015–20282028
[8] J. Yang, H.S. Shen, Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels, Journal of Sound and Vibration
261 (2003) 871–893.

[9] M.M. Najafizadeh, H.R. Heydari, An exact solution for buckling of functionally graded circular plates based on higher order shear deformation plate
theory under uniform radial compression, International Journal of Mechanical Science 50 (3) (2008) 603–612.

[10] P.W. Chih, S.S. Yun, Exact solutions of functionally graded piezoelectric shells under cylindrical bending, International Journal of Solids and Structures
44 (20) (2007) 6450–6472.

[11] H.L. Dai, Y.M. Fu, Z.M. Dong, Exact solutions for functionally graded pressure vessels in a uniform magnetic field, International Journal of Solids and
Structures 43 (18–19) (2006) 5570–5580.

[12] Z. Shi, T. Zhang, H. Xiang, Exact solutions of heterogeneous elastic hollow cylinders, Composite Structures 79 (1) (2007) 140–147.
[13] P. Lu, H.P. Lee, C. Lu, Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism, Composite Structures

72 (3) (2006) 352–363.
[14] L.H. Xiao, H.S. Shen, Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments, Journal of

Sound and Vibration 289 (2006) 25–53.
[15] X.Q. He, T.Y. Ng, S. Sivashanker, K.M. Liew, Active control of FGM plates with integraded piezoelectric sensors and actuators, International Journal of

Solids and Structures 38 (2001) 1641–1655.
[16] J. Yang, S. Kitipornchai, K.M. Liew, Large amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates, Computer Methods in

Applied Mechanics and Engineering 192 (2003) 3861–3885.
[17] K.M. Liew, S. Sivashanker, X.Q. He, T.Y. Ng, The modeling and design of smart structures using functionally graded materials and piezoelectrical

sensor/actuator patches, Smart Materials and Structure 12 (2003) 647–655.
[18] S. Panda, M.C. Ray, Active control of geometrically nonlinear vibrations of functionally graded laminated composite plates using piezoelectric fiber

reinforced composites, Journal of Sound and Vibration 325 (2009) 186–205.
[19] G. Ahmad, S. Manouchehr, F. Saeed, Deflection control of functionally graded material beams with bonded piezoelectric sensors and actuators,

Materials Science and Engineering A 498 (2008) 110–114.
[20] J.N. Reddy, A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics 51 (1984) 745–752.
[21] J.A. Mitchell, J.N. Reddy, A refined hybrid plate theory for composite laminates with piezoelectric laminate, International Journal of Solids and

Structures 32 (16) (1996) 2345–2367.
[22] Q. Wang, S.T. Quek, C.T. Sun, X. Liu, Analysis of piezoelectric coupled circular plate, Smart Materials and Structures 10 (2001) 229–239.
[23] S.S. Vel, R.C. Batra, Three-dimensional exact solution for the vibration of functionally graded rectangular plates, Journal of Sound and Vibration 272

(2004) 703–730.
[24] S. Pradyumna, J.N. Bandyopadhyay, Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation,

Journal of Sound and Vibration 318 (2008) 176–192.
[25] T.Y. Ng, K.Y. Lam, J.N. Reddy, Dynamic stability of cylindrical panels with transverse shear effects, International Journal of Solids and Structures 36

(1999) 3483–3496.
[26] Y.M. Fu, Nonlinear Dynamic Response Analysis of the Structure [M], Jinan University Press, Guangzhou, 1997.


	Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate
	Introduction
	Basic equations
	Solution methodology
	Numerical results
	Conclusion
	Acknowledgment
	References




